Math 524 Exam 2 Solutions

All problems are for the vector space $\mathbb{R}_{2}[t]$, real polynomials of degree at most 2 . We define $V=\{p(t): p(1)=0\}$, a subspace of $\mathbb{R}_{2}[t]$.

1. Let $A=\left\{a_{1}, a_{2}\right\}$ for $a_{1}=t-1, a_{2}=t^{2}-1$. Let $B=\left\{b_{1}, b_{2}\right\}$ for $b_{1}=t^{2}+t-2, b_{2}=$ $t^{2}+2 t-3$. Prove that A and B are each bases of V.

We first prove that A, B are independent. $\alpha a_{1}+\beta a_{2}=\beta t^{2}+\alpha t+(-\alpha-\beta)$; if this equals zero then $\alpha=\beta=0$. $\alpha b_{1}+\beta b_{2}=(\alpha+\beta) t^{2}+(\alpha+2 \beta) t+(-2 \alpha-3 \beta)$; if this equals zero then $\alpha+\beta=0=\alpha+2 \beta$. The only solution is $\alpha=\beta=0$. Because $V \neq \mathbb{R}_{2}[t]$, which has dimension 3, V has dimension at most 2 . However, it has dimension at least 2 since A, B are in V, independent, and of cardinality 2 . Hence A, B are bases.
2. Calculate $\left[3 t^{2}-5 t+2\right]_{A}$.

Since only a_{2} has a t^{2} term, and only a_{1} has a t term, this is easy: $(-5,3)^{T}$. Note: this means that $3 t^{2}-5 t+2=(-5)(t-1)+(3)\left(t^{2}-1\right)$.
3. Calculate $P_{B A}$.

It is easier to first find $P_{A B}=\left(\left[b_{1}\right]_{A}\left[b_{2}\right]_{A}\right)=\left((1,1)^{T}(2,1)^{T}\right)=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$.
We now calculate $P_{B A}=P_{A B}^{-1}=\left(\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right)$.
4. Use the results of the previous two problems to calculate $\left[3 t^{2}-5 t+2\right]_{B}$.

$$
\begin{aligned}
& {\left[3 t^{2}-5 t+2\right]_{B}=P_{B A}\left[3 t^{2}-5 t+2\right]_{A}=\left(\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right)\binom{-5}{3}=\binom{11}{-8} .} \\
& \text { Note: this means that } 3 t^{2}-5 t+2=(11)\left(t^{2}+t-2\right)+(-8)\left(t^{2}+2 t-3\right) .
\end{aligned}
$$

5. Let $W=\{a t: a \in \mathbb{R}\}$. This is a subspace of $\mathbb{R}_{2}[t]$. Prove that $\mathbb{R}_{2}[t]$ is the internal direct sum of V and W.

This is a consequence of Theorem 2.13. We have been told (and we believe, being trusting people) that V, W are subspaces of $\mathbb{R}_{2}[t]$. To complete the proof, we need to show two things:

1. The dimension of V (already calculated to be 2), plus the (unknown) dimension of W, equals the dimension of $\mathbb{R}_{2}[t]$ (already known to be 3).
2. $V \cap W=\{0\}$.

We prove that W is one-dimensional (1) by observing that every polynomial in W is a scalar multiple of every other; hence an independent set can have only one vector in it. We next note that for $f(t)=a t$, an element of $W, f(1)=a$. Hence for this to be in V we must have $a=0$; in this case $f(t)=0$ which is the zero polynomial (zero vector). This proves (2).

